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This paper treats the stability of the initial boundary value problem for the method of 
lines applied to hyperbolic and parabolic partial differential equations in one space dimen- 
sion. The theory treats the case of variable coefficients and allows for very general boundary 
conditions. Several examples are given which illustrate the theory. The theory is analogous 
to that developed by Gustafsson, Kreiss, and Sundstrbm for finite-difference methods. 

WTRODUCTION 

The method of lines is a technique for the numerical solution of time-dependent 
partial differential equations in which one replaces the spatial differentiation by 
appropriate finite differences on a discrete set of grid points. In this way one obtains a 
system of ordinary differential equations with time as the independent variable and 
with the approximate values of the solution at the grid points as the dependent 
variables. This approximation of initial boundary value problems for partial differen- 
tial equations by initial value problems for systems of ordinary differential equations 
is called the method of lines. 

The resulting system is then solved numerically using a standard method for solving 
initial value problems for ordinary differential equations. An attractive feature of this 
method is that high-quality software has been developed to solve the stiff systems of 
differential equations which usually result from this method. 

This paper discusses the stability of initial boundary value problems for the method 
of lines applied to linear hyperbolic and parabolic partial differential equations in one 
space dimension. Assuming that the problem for the partial differential equation is 
well posed, the stability question considered here is whether or not the approximation 
by the method of lines is also well posed, i.e., stable. No attempt will be made to 
discuss the accuracy or efficiency of the method as a general computational technique. 

The results obtained here are analogous to those obtained for finite-difference 
equations by Gustafsson, Kreiss, and Sundstrom [2], Varah [4], and for hyperbolic 
partial differential equations by Kreiss [3]. The paper by Gustafsson, Kreiss, and 
Sundstrijm will hereafter be referred to as GKS. 

* This report was prepared as a result of work performed under NASA Contract No. NASl-14101 
at TCASE, NASA Langley Research Center, Hampton, Va. 23665. 
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The main theorem of the paper concerning stability is stated in Section 1 for linear 
hyperbolic systems and its application is illustrated by several examples. The proof of 
rhe theorem and its extension to parabolic systems is sketched in Section 2. Section 3 
treats variable cocfficicnts and the cast of two boundaries. Finally, Section 4 clarifies 
the relationship of these results to those of Gary [I]. 

1. THE HYPERBOLIC INITIAL BOUXDARY VALUE PROBLEM 

Ccnsider the hyperbolic system of partial dift‘erential equations 

on the half-line x .a 0 with t > 0. At the boundary x’ = 0, we have the boundary 
conditions 

Tu(t, 0) = g(t) (! 2) 

and at t = 0 we have, for simplicity, the initial condition 

u(0, x) = 0. (i .3) 

The variable u is an n-vector, u -:: (ul ,..., u,J’, and since the system (1.1 j is hyperbolic. 
the matrix A is diagonalizable with real eigenvalues. We also assume that A is non- 
singular, and that the rank of T is equal to the number of ncgativc cigenvalue of A as 
is required for well-posedness. 

We will assume that the above initial boundary value problem is well posed. The 
rheorem Tar well-posedness of hyperbolic initial boundary value problems of this type 
is the following (cf. Kreiss [3]). 

'1 IJEOREM i . 7%~ initial boundary calm problem (1. I)-( 1.3) is ~vell posed {f and onl,v 
if it has no eigensohrrions. 

flerc eigensolutions are defined as follows: 

DF.FIXITION. An eigensolution for the system (1.1)-(1.3) is a function ZJ(X, s) satis- 
fying the following: 

(a) SII -- -. A??,: on x 3 0, 

(b) 92~ s 3 0, 

(c) for 9% s 1 0, L.(x, s) is bounded as x + CL), 
(d) for 928 s - 0, z;(,u, s) - lim,,,, t’(x, s + c), where u(x, s + c) salis- 

fies (c) and (a) (with s replaced by s -L E), and 

(ej Tu(0, s) = 0. 
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To approximate the initial boundary value problem (l.l)-(1.3) by the method of 
lines, a set of grid points {Xi}&, xi = i/r, is introduced and the differential equation 
(1.1) is replaced by 

dvi 
- = ADvi +f(t, si) 
dt 

for i > r. (1.5) 

The new variables v”(t) approximate u(t, x2) and the difference operator D is defined by 

Dun& = i djvwi, 

i--r 
(1.6) 

such that Eq. (1.5) is a consistent approximation. The coefficients dj may be matrices 
as would be the case if different variables were differenced by different schemes. 
Equation (1.5) is the approximation of Eq. (1.1) on the interior of the grid; for the 
boundary region where Eq. (1.5) cannot be applied we use different difference schemes 
at each point. We have 

dvk 
- = AD,@ + f(t, x3, 
dt 

O<k<r, (1.7) 

where the difference operators D, are given by 

27-k 

D,vk = C dkjvk+j, O,<k<r. (I.9 

On the boundary itself we have the boundary condition (1.2) and possibly some 
interpolation. This can be written 

2 Tjv~ = g”(t). 
j=O 

(1.9) 

In order to completely determine the variable II” additional conditions obtained 
from the differential equation may also be applied. This can be written 

dv” 
S dt = ADovo + f(t: 0), (1.10) 

where Do is given by Eq. (1.8) for k = 0. We will assume that the rows of To and S 
form a linearly independent set of n vectors, that is, all components of the vector v” 
can be determined by Eqs. (1.9) and (1.10). 

Finally, the initial conditions are taken to be 

vi = 0, i g? 0. (1.11) 
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We will, of course. need that the Cauchy problem for Eq. (1.5) is stable. For con- 
venience we will make the following stronger assumption which was also made in 
GKS. 

Assumpfio~z 1. The ditrerence equation (1.5) is either totally dissipative or tota!ly 
nondissipative, that is, the equation 

det sl - A i diei’@ 1 = 0 
j=. 7 

satisfies either 
995 s < - se2 for :ej <n 

for some positive constant 6, or 

.A-%es=o for all 8. 

The purpose of this paper is to determine the conditions under which the initial 
boundary value problem given by Eqs. (1.5)< I. I 1) is stable. The conditions are best 
stated in terms of eigensolutions which are defined as follows. 

Consider the difference equation given by the resolvent equation corresponding to 
Eq. (I .5), 

Let {vi(s))& be a solution to Eq. (1.12) for 98 s > 0 such that 

I+(S) .+ 0 as i ---> I *. (1.13) 

If {#(s)l is such a solution which in addition satisfies the homogeneous boundary 
conditions 

&yt.k ::: A D,z;k 7 O<k <r, (l.;d) 

.sSd’ - - A Deco, ( I I 5‘) 

and 

then {Z?(S)) is an eigensolution. 
Eigensolutions are also delined when the real part of s is zero; in this case Eq. (i. 13) 

must be replaced by the condition 

ci(so) = lim z?(so + E), 
E-m+ 

(i.17) 

where (z+(so I- c)} satisfies both Eq. (1.12) for s = so -!- E and condition (1.13). 
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The main result can now be stated. 

MAIN THEORELL A necessary und sufJicient condition for the method-of-lines 
initial boundary value problem (1.5)-( 1.1 I ) to be stable is that there exist no eigensolution 
to the problem. 

The proof will be deferred until the next section in order to give immediate examples 
of its application. The first two examples given are very simple and serve to illustrate 
the theory without algebraic encumbrances. The last two examples are more typical 
of boundary conditions encountered in applications and require more algebraic 
manipulation. 

EXAMPLE 1. Consider the partial differential equation 

lit = II, t f (El.l) 

on the region x > 0, t > 0. No boundary condition is needed at x = 0. Consider 
the method-of-lines approximation 

dvf 1 
dt 

- vi-“1 - lzi + f(t x.) 
h 3 I9 i =- 0 9 >..‘, (E1.2) 

and (El .2) is also the boundary condition at i = 0. 
To check for eigensolutions we solve 

hsr;i = +l _ vi, (E1.3) 

which has the solution 

vi = (1 + sh)’ v”. 

For S?k s > 0 there are no solutions to (E1.3) with vi -+ 0 as i---f co. Therefore, since 
(E1.2) has no eigensolutions, it is stable. 

EXAMPLE 2. Consider the same partial differential equation as in Example 1, but 
with the method-of-lines approximation 

dr? (&+l _ ,i-1) 
-- zzz 
dt 2h ’ 

i > 1. (E2.1) 

This requires a boundary condition at i = 0 since (E2.1) cannot be applied there. We 
take 

dz? ($ - z;“) 

dr== 2h * 
(E2.2) 

The resolvent equation is 
'&hoi = viy-l _ +l (E2.3) 



INITIAL BQUNDARY VALUE PROBLEMS 99 

To solve this equation set ~9 = KV and substitute in Eq. (E2.3) then solve 

2shK = ~~ - 1. 

The solution for j K j < 1 is 

K = sh - [(sh)2 + 1]1/2. 

Substituting this in the boundary condition we have 

2sh = (sh - [(sh)2 + l]l/z)” - I 

hi& has the solution s = 0. Thus a solution to the resolve& equation and 
undary conditions exists, but since the real part of s is zero, condition (1.17) 

be satisfied. Setting sh = E we have 

/ K / = j  E - (1 + +I2 j  < i 

so that (vi] satisfies condition (1.17) and therefore is an e~ge~solution~ This shows 
that this second example is not stable. 

e next two examples are taken from scheme D in the paper by Gary [l] and will 
be discussed again in section 4. 

EXAMPLE 3. The partial differential equation is 

Ut = -I& on x 20, t 30; 

the boundary condition required at x = 0 is 

u(t, x = 0) = g(t). 

(EL 1) 

(E3.2) 

For the method-of~iil~es approximation take 

(-zF + gvj-I _ gj+l + vj+2j dvj - 
dt 12k 2 j > 2. (E3.3) 

For the boundary conditions take 

and 

dV1 (3vQ t 1029 - 1 8v2 + 6v” - vy 
dt 12k 

VQ = g(t). 
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We now examine this problem for eigensolutions. The resolvent equation for (E3.3) 
iS 

12hsd = -&2 i- gvj-1 _ gvifl -1. 8122. (E3.6) 

To solve this difference equation set vj = K.V J O, obtaining a po1ynomial equation for K, 

12hs = (-1 + 8K - 8K3 + K’) K-2 = k(K) K?. (E3.7) 

For %!ti s large there are two roots of (E3.7) inside the unit circle and WC s is zero 
for K on the unit circle. Therefore, in general there are two roots of (E3.7) with 
modulus less than unity when 98 s > 0. Denote these two roots as K1(S) and K~(.s). If 
{vj} is to be an eigensolution then it must have the form 

d = Cq(K&))I -t- 44))j. 

The homogeneous boundary condition at j = 0 gives cy2 :- -~zr ; we may take 
iyr .:= I by homogeneity. The boundary condition at j =: 1 gives 

12h(K, - K2) = lo(K, - Ke) - 18(K12 - K2’) .-‘- 6(K18 -.- K2”) - (Ki’ - Kz4), 

12hs - 10 - 18(~, + K~) + 6(~,~ ( K~K~ -f K~*) - (Key $- K~*)(K~ + ~2). (E3.8) 

A second expression for s is obtained from (E3.7). Since 

then 

12h.r = (k(fc3 - ~(K,))/(K,~ - Key) 

:.; KI 2 + K22 - 8 K,2 + ( K1K2 : - K22)/(K1 -1. K~) 4. S/(K~ + KJ. (E3.9) 

Equating these two expressions for s and setting 

K1 T  ’ K2 z Y, KlK2 = X 

gives 

y” -- 5~2 $- 10~ - 10 - 2x~’ -: 4x + 8(x + 1)/v = 0. (E3.10) 

A second equation for x and y obtained from (E3.7) is 

which simplifies to 

(k(K,) KT2 -- k(K2) Ki2);(KI -- K3 = 0 

y 7: 8x(x -I- 1)/(x2 $ 1). (E3.11) 
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Substituting (E3.11) in (E3.10) we obtain 

-11x8 + 246x7 + 960x6 + 994x5 + 34x4 - 2869 + 88x2 - 10x + 1 = 0. (i?d2) 

Solving for the roots of (E3.12) numerically and using (E3.11) to obtain .V and thus ICY 
and K2, and then using (E3.7) to obtain s, we see that there are no eigensomtions and 
thus the problem is stable. Note that by diving by (K~ - ~3 in obtaining (E3.11) we 
have also treated the case of K~ = + . 

EXAMPLE 4. The partial differential equation is 

Ut = 24, on x 3 0, t > 0, 

and no boundary condition is required at 3~’ = 0. 
For the method-of-lines approximation take 

dd (vj-2 _ 8v?-1 + &j+1 _ ,j+2) 
-= 
dt 12h 9 j 3 2. (E4.2) 

For the boundary conditions, take 

and 

dvl (3v” + 1Ovl - l&P + 67.9 - uJ) -=- 
dt 12h 

(E43) 

duo (25~~ - 4811~ + 36v2 - 16v3 + 3~“) -=- 
dt 12h 

e (E4,4) 

e now check for eigensolutions to this problem. As in example 3, we solve for 

ere K~ and K* are the roots of 

satisfying I K j < 1. 

12hs = (1 - 8~ + 8K3 - K4) K-~ 

The boundary conditions yield two equations for 01~ and 01~ a Let o” = 12hs, then we 
obtain 

where 

go(K) = -(25 - 48K + 36~~ - 16~” * 3K3, 

&(K) = -(3 + 1oK - 18K2 + 6K3 - K4)a 
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If there exists a nontrivial solution to (E4.6), then the problem is unstable. A non- 
trivial solution to (E4.6) requires that 

0=-.-L (jet .!&d~l> - fJ &I(%) - Q 
KI - Kz b?(Kd - UK1 g&d - UK2 . 

(E4.7) 

If K satisfies (E4.5), then 

and 

go(K) - CF = /C-2(1 - /c)” (3fc - 1) 

&(K) - OK = -K-l(1 - K)5, 

so that Eq. (E4.7) reduces to 

-(l - K1)5 (1 - K2)5 KF2KL2 = 0. 

Therefore an eigensolution exists Only if K~ or ~~ eqUdS 1. If one rOOt, say K~ , iS equal 
to 1, then s = 0, and from (E4.5) 

K2 = 4 - (15)1/2 or K2 = -1. 

To see if K~ = 1 gives rise to an eigensolution we consider how K1 depends on s when 
s is perturbed from 0 to E. Set K = 1 + 6 in (E4.5), then 

12hs = 126 + O(cp). 

So for 88 s > 0, then / K / > 1, so s = 0, K = 1 does not give an eigensolution. 
Again, one can check that the possibility of K~ = ~~ has been covered by dividing 
(E4.7) by (K1 - K-3. We conclude there are no eigensolutions and this example is 
stable. 

2. THE PROOF OF THE MAIN THEOREM 

The proof of stability for initial boundary value problems for the method of lines is 
essentially the same as the analogous theorem for difference equations given in GKS. 
Only a sketch of the proof will be given. 

The first step is to take the Laplace transform with respect to t of Eq. (1.5). Let s be 
the dual variable. We obtain 

s8 = ADS + f(s, xi) 43 1) 
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and similar equations for the boundary conditions. Next rewrite the equation as a 
one-step difference equation in the x-direction, i.e.: 

where 
)$p = (62” 1V1’ I),..) 6’3’. 

If we assume for simplicity that the matrix d, in Eq. (1.6) is nonsingular, then M(s) has 
the form 

... d;‘(d,, - A ‘s) ... 

and 

-- I 

G” = (d,‘j ,.., 3 0: . . . . 0)‘. 

We also write the boundary conditions in terms of w”, obtaining 

‘jjv” ..T - g. (2.3) 

The matrix M(s) is like the matrix M(z) occurring in GKS, the main ditt‘erence being 
that M(z) depends on z for 1 z , > 2 1 while M(s) depends on s for .%e s :> 0. The 
relationship between z and s can be thought of as z =.- exp(hs). although this is not 
rigorous. 

Before actually proving the theorem it is necessary to transform M(s) to a norma! 
form. The normal form is the same as that of Theorem 9.1 of GKS. This normal form 
transforms M(s) into block form with each block containing diKerent types of eigen- 
values. 

With M(s) in this normal form it is possible to construct a Hermitian matrix H(.rl 
satisf$ng 

&f”HM - H is r$h .%‘e .y. (2.4) 

(M* denotes the conjugate transpose of M.) If there are no eigensolu.tions, H(s) can 
be constructed so that 

H f PI”’ 3 S2) (,2.5) 

where 6, and a2 are positive constants and His bounded in norm independently of .r 
Define a norm by 

f’;E = 1 !  f” ,2, 

,=u 

With these preliminaries, the proof may now be established. 
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By inequality (2.5) 

- 2 Be f (G”, HIW) i- f (c”, HG”) 
v=o v=o 

Rewriting the above in terms of 6 and defining a norm for the boundary 

we obtain 

IT- 1 

rfl: -= C if’,“, 

J-O 

All that remains is to use Parseval’s equality to write the above inequality in terns 
of the original, untransformed variables. This is done rather concisely if we introduce 
the norms 

and 

and use Parseval’s relation 

Then the above inequality becomes, for 7 sufficiently large, 

for some constant C independent of 7. This inequality defines the meaning of stability 
for the hyperbolic initial boundary value problem given by Eqs. (1.5)-(1.11). This 
completes the proof of the Main Theorem. 
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The theory for parabolic initial boundary value problems is essentially the same as 
that for hyperbolic problems. The main difference is that in the parabolic case the 
matrix N(s) does not satisfy inequality (2.4) but rather 

M*HM - H 3 6,h S’e .s~,‘~ 

so that inequality (2.6) becomes 

3. VAKIABLI; COEFFICIENTS AND Two BOUWARIG 

In actual practice the problem (1.1) would be solved, not on a half-line x > 0: but 
on an interval such as 0 < x r< I. Also, the coefkicnt matrices might be functions 
of t and s, and in addition, lower-order terms could be present in Eq. (1.1). All of 
these considerations can be handled following the treatment given in GKS. 

Stability, as used in this paper, is preserved under the effects of both lower-order 
terms and variable coefficients, provided they are smooth enough. That is, one need 
only examine the “frozen coeffkient problems” without lower-order terms to deter- 
mine stability. The frown coefficient problems are those constant coefficient initial 
boundary value problems obtained by fixing all the coefikients at the values they take 
on for each value of t and X. The stability of the initial boundary value problem with 
two boundaries can be shown to follow from the stability of each of the corresponding 
half-plane problems which are those obtained by freezing the coeffcients at their 
values on the boundary, ignoring the effect of the opposite boundary, and extending 
the domain to infinity. If each of these half-plane problems is stable, then so is the 
original problem. 

4. A DISCUSSION OI: EXAMPLFS 3 AND 4 

This section discusses the application of the preceeding results to scheme D of the 
paper by Gary [I]. This scheme is a method-of-lines approximatron to the problem 

Zlf f u, r= 0, 

u(r 
? 

0) .~ .-s*n “,” -y := o.57 
. 2 7 (4. i ) 

~(0, x) :- sin 277x. 

The approximation is 
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with the boundary conditions 

00(t) = - sin 27rt, 

d&l 

dt 

(+J-4 .,. (jcJ-3 - j&,+3 k I()+’ + 3~7’) 
.--..___- 
12h 

. (4.3) 

dLJ (3&J-” -. ]($,J-3 -1. 3&J-2 - 4&# ’ + 25LJ) 
- -z= - _.------ --- -- ------.-- dt 12h 5 

and 

d(O) = sin 2rhj, j = O,..., J. 

Example 3 treated the half-plane problem arising from the first two boundary 
conditions, i.e., those at x = 0, while Example 4, treated the half-plane problem for 
the last two boundary conditions, i.e., those for x = 0.5. These two examples and the 
theory outlined in Section 3 show that the initial boundary value problem (4.2)-(4.3) 
is stable in the sense of this paper. 

However, under Gary’s definition this scheme is unstable. His definition of stability 
does not allow for any growing modes in the solution of the approximation, i.e.: all 
eigenvalues of the system of differential equations (4.3) must have a nonpositive real 
part. The definition of stability employed in this paper however does allow for eigen- 
values with positive real part. Gary’s definition of stability, which is never explicitly 
stated, is stronger than that of this paper in that it restricts the exponential growth of 
the solution of the approximation to be no more than that of the solution of the 
differential equation. It is this author’s opinion that such a restriction is in reality a 
restriction on the accuracy of the approximation and therefore should not be con- 
sidered in questions of stability. 

Under Gary’s definition stability may be influenced by the number of grid points, 
J, employed. Thus, under his definition, scheme (4.3) is stable for J =- 5, while for 
J = 10 or J = 20 it is unstable. Under the definition used in this paper, scheme (4.3) 
is stable for all values of J, but because of the eigenvalues with positive real part the 
scheme for J = 10 will be less accurate than that for J y= 5 over long time integrations. 

In summary, the advantages of the definition of stability used in this paper are that 
the stability is independent of the number of grid points, the theory encompasses 
variable coefficients and lower-order terms, and there exists a procedure for deciding 
the stability of any given initial boundary value problem. 
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